
Where is the Road for Issue Reports Classification
Based on Text Mining?

Qiang Fan, Yue Yu∗, Gang Yin, Tao Wang, Huaimin Wang
National Laboratory for Parallel and Distributed Processing

College of Computer, National University of Defence Technology
Changsha, China

{fanqiang09, yuyue, yingang, taowang2005, hmwang}@nudt.edu.cn

Abstract—Currently, open source projects receive various
kinds of issues daily, because of the extreme openness of Issue
Tracking System (ITS) in GitHub. ITS is a labor-intensive and
time-consuming task of issue categorization for project managers.
However, a contributor is only required a short textual abstract
to report an issue in GitHub. Thus, most traditional classification
approaches based on detailed and structured data (e.g., priority,
severity, software version and so on) are difficult to adopt.

In this paper, issue classification approaches on a large-scale
dataset, including 80 popular projects and over 252,000 issue
reports collected from GitHub, were investigated. First, four tra-
ditional text-based classification methods and their performances
were discussed. Semantic perplexity (i.e., an issues description
confuses bug-related sentences with nonbug-related sentences)
is a crucial factor that affects the classification performances
based on quantitative and qualitative study. Finally, A two-stage
classifier framework based on the novel metrics of semantic per-
plexity of issue reports was designed. Results show that our two-
stage classification can significantly improve issue classification
performances.

Index Terms—issue tracking system; machine learning tech-
nique; mining software repositories;

I. INTRODUCTION

The prosperity of open source software (OSS) resulted in an
increasing number of developers joining in and contributing
to OSS communities. GitHub is one of the most popular
social coding communities that attracts a large number of
developers [1] . As of April 20161, over 14 million registered
users are collaborating in GitHub, showing a great power in
driving the OSS project forward. Based on the perspective of
contributors, reporting issues using issue tracking system (ITS)
is one of the most important activities in OSS communities
[2]. Section II-A describes that the GitHub-provided ITS is
more lightweight to use today, compared to the traditional
ITS (e.g., Bugzilla). A contributor is only required a short
textual abstract, containing a title and an optional description,
to report a new issue in GitHub. Therefore, this simplified
process of reporting issues decreases the barrier to entry and
attracts more inexperienced external contributors. According to
our statistics, Ruby on Rails, one of the most active projects
in GitHub, receives upwards of 700 new issues each month.

However, the extreme openness of ITS poses a serious chal-
lenge for the core team in project maintenance. In large-scale

*Corresponding author.
1https://en.wikipedia.org/wiki/GitHub

projects, many undesirable and vague issue reports are submit-
ted by external contributors (e.g., asking questions, as shown
in Figure 1) because of their reluctance to spend adequate time
to read and comprehend the contribution guidelines (as shown
in Figure 2), which provide details on reporting a high-quality
issue and the kind of issue the project prefers. Thus, issue
categorization is a labor-intensive and time-consuming task for
project managers. Furthermore, the core team members have
to provide quick responses and resolve the incoming issues in
time to sustain the passion of external contributors [3].

Fig. 1. Example of undesirable issue in ITS

Fig. 2. Example of contribution guidelines in GitHub

Most issue management tasks are organized based on the
label system in GitHub2 (as discussed in Section II-B). One of
the most popular practices is distinguishing different types [4]
of issues (e.g., bug, feature request, and refactoring), which
is a manual process maintained by core developers. Thus, the

2https://help.github.com/articles/applying-labels-to-issues-and-pull-
requests/

high performance of issue categorizing approach, especially
issues established in limited prior information (i.e., the major-
ity of issues only have textual summary and historical data
of submitters), could significantly reduce the cost of issue
management.

This paper focuses on the challenge of distinguishing real
bugs from nonbugs among all issues, similar to prior work [5],
[6]. Although a fine-grained classification is deferred for
future work, we argue that this work can 1) greatly improve
the efficiency of issue management in GitHub because well-
established projects prefer to maintain limited types of issues,
especially for bug and feature (e.g., Ruby on Rails3, and
angualr.js4); 2) reduce the noise and bias [5], [7] introduced
by confusing real bugs with other types of issue (e.g., feature
requests), when building bug prediction [8], [9] or software
quality [10] models based on mining the big data from GitHub.

In summary, the key contributions of this paper include:
• The study of text-based classification approaches on a

large-scale dataset. Four different machine learning clas-
sifiers were evaluated on 80 popular projects in GitHub.
The results show that the support vector machines (SVM)
achieve the best performance.

• The limitations of text-based classification approaches
were analyzed, and the results showed that semantic
perplexity (i.e., an issue’s description confuses bug-
related sentences with nonbug-related sentences) is a
crucial factor that affects classification performances.
Thus, representative metrics were designed to quantify
the semantic perplexity of an issue report.

• A novel two-stage classifying framework was designed
to improve the performances of traditional classification
models. Features relating to semantic perplexity were
extracted from free text in the first stage, and then a
synthesized classification model was built in the second
stage. The quantitative evaluations show that classifica-
tion performance can achieve a significant improvement.

The structure of this paper is organized as follows. In
Section 2, we introduce the background of our study, and
illustrate related work and our research questions. In section 3,
we present the key process of building effective classification
models. The results and discussion can be found in Section 4.
Finally, we draw our conclusions in Section 5.

II. BACKGROUND AND RELATED WORK

A. Issue Tracking System

Software development generally produces programs with
two caveats [11]: (1) they are often incomplete with respect
to certain features, and (2) they are usually buggy. In the
development process, most of time, developers code and test
the programs, while end-users (does not exclude developers)
use the programs and provide feedbacks. Both developers
and end-users can submit issues to ITS when the software

3http://edgeguides.rubyonrails.org/contributing to ruby on rails.html
4https://github.com/angular/angular/blob/master/CONTRIBUTING.md#

issue

performance does not meet their expectations. Then, the core
team needs to clearly understand the intentions of the contrib-
utors, distinguish categories, and find suitable developers to fix
the corresponding issues at the stage of project maintenance.
Using the ITS is a common way to organize and maintain
development tasks in the open source practice [12] to help
project mangers keep track of issue reports by monitoring
progress, identifying new issues, discussing potential solutions
for fixing bugs, and so on. The consistent utilization of ITS is
considered as a “hallmarks of a good software team” [13] in
open source communities.

Discussion

FixAssignee

Management

Locate

Issue
Report

Category ImportanceSoftware
Product ...

Find Bug

Issue Tracking
System

Open Fixed

Won't Fix

Fig. 3. Workflow of management for traditional ITS

Dozens of ITS tools has been popularized, e.g., Bugzilla
and ITracker, with the development of OSS. These traditional
tools design a rigid and complicated data structure, which are
used for organizing issues, e.g., category, priority, assignee
and status. Figure 3 shows the common workflow. First, when
contributors find bugs in the software, they are usually asked
for a basic description about the bug, and the structured
fields are completed to as many as they can. Second, core
team members and contributors discuss their problems to
clearly understand the problems. Thereafter, the structured
information that requires distinguishing suitable categories,
determining priorities, making plans to ensure progress, and
locating the issue (indicating the product, component, and ver-
sion of the software where the issue appeared) are corrected.
Finally, based on all structured information, the corresponding
developers would be assigned to fix the bugs.

Several academic studies focus on ITS to free the managers
from some cumbersome and repetitive work, such as auto-
matically classifying issue reports to bug-prone and nonbug-
prone [4]–[6], bug assignment [14], [15], duplicate issue de-
tection [16], [17], fixing time prediction [18], and so on. Most
of the existing approaches highly depend on the structured bug
data (e.g., priority and severity). However, prior work [4]–[6]
has shown that OSS contributors often omit or use default

value for some important information, which results in many
wrong messages and missing messages existing in ITS. Thus,
improving the efficiency of ITS services is becoming an
important research topic [12].

B. Lightweight ITS in GitHub

Discussion

FixAssigneeIssue
Report

Software
Product

Find Bug

Issue Tracking
System

Open Closed

Select
Labels

Customize

Label System

Fig. 4. Workflow of management in GitHub ITS

GitHub, the largest social coding community, released its
own ITS called Issues 2.05 in 2014 to provide an excellent
service in reporting issues. Figure 4 summarizes the typical
workflow of issue management in GitHub. First, the contribu-
tor submits an issue report and provides some textual summary
to describe it. Second, the core team of the project discusses
the issue with the contributor. During discussion, the core team
needs to reach an agreement of the issue with the contributors,
and select relevant labels for the issue from pre-defined labels.
Finally, the core team assigns the issue to be fixed by the
corresponding developer.

GitHub provides a more lightweight ITS that is flexibly
integrated with its label system, compared to traditional ITS.
The structured information of issues, such as category and
priority, is substituted by the label system in GitHub. Contrib-
utors are only required a short textual abstract when submit
issues, whereas the core team can use labels, besides milestone
and assignee, to mark and manage issue reports. The label
system in GitHub is custom and the core team can summarize
information concerns them most as labels. Zach Holman, a
GitHub engineer, describes his design as follows: “Our goal
is basically to make a flexible, simple product that everyone
can enjoy.” “In the meantime, we’ve found that using labels
and milestones is a great way to achieve the same result (other
functions) in a more flexible system.”

The lightweight design of ITS results in some changes for
the contributors and core team. For contributors, Issue 2.0 re-
duced the cost of submitting issue reports and stimulated their
enthusiasm. However, its openness results in the emergence
of undesired issues in ITS. Consequently, loose constraints

5https://github.com/blog/831-issues-2-0-the-next-generation

reduced the work of contributors, which are transferred to the
core team as management task. Thus, an automatic approach
that can effectively filter out useful issue reports is significant
and urgent for issue management. For the core team, the
flexible label system makes the management task customizable
and configurable. The flexibility breaks the fixed form of man-
agement, and the core team can shape the way of management
according to their requirement. However, this customization
lacks mandate and enforceability, thereby omitting structured
information. Moreover, this customization results in difference
in usage among projects, which makes the management of
different projects difficult to understand.

A study on a large-scale dataset was performed to build a
common and effective text-based classification approach for
GitHub projects. This paper focuses on classifying bug-prone
and non-bug prone issue reports because of the dominance of
bugs in ITS. We expect to refer the achievement from former
research on traditional ITS, so we ask:

RQ1: Do traditional text-based classification approaches
still work on the ITS of GitHub? Which classifier performs
best?

In prior research [6], [19], combining textual and struc-
tured information (e.g., priority, assignee, and so on) is used
routinely to outperform the classifier. However, as previously
discussed, the omission of structured information is serious
in the ITS of GitHub. The data that can be used to build
a classifier are limited because of the structured information
scarcity. Thus, only textual summary and the historical data of
submitters can be used for the majority of issues. Facing this
challenge, we expect to study some factors that may influence
the performance of classifiers, so we ask:

RQ2: What factors influence the performances of text-
based classification approaches?

The factors that influence the performances of text-based
classifiers, which would guide us to extract more additional
features from textual summary, can be identified using the
regression analysis. In this paper, a two-stage classifier frame-
work, which can flexibly combine textual information and
other types of features, was built. To evaluate our approach,
we ask:

RQ3: How to improve the classification performances
by integrating different types of features, especially for
the semantic complexity metrics extracted from textual
descriptions?

C. Related Work

Many studies have investigated bug classification [4]–[6] to
predict whether an issue is about a bug.

Antoniol et al. [4] investigated the automatic classification
of issue reports by utilizing conventional text mining tech-
niques based on the description part of issue reports. By
extracting the textual part of issue reports (title, description,
and discussions) from ITS of three case projects and building
classifiers using three supervised MLTs (alternating decision
trees, Naive Bayes classifiers, and logistic regression), lin-
guistic information in ITS is sufficient (82% best precision

for three case projects) to automatically distinguish bugs from
other activities.

Zhou et al. [6] proposed a hybrid approach that combines
text and data mining techniques and considers the misclas-
sification of issue reports in ITS. They took advantage of
structural information with textual information that proposed
a hybrid approach that combines text and data mining tech-
niques, and achieved an excellent result (average 84.7 for 5
case projects).

A common approach adds information extracted from
ITS [4], [6], [19] to improve the performance of the model.
In [4], discussions are involved; in [6], structural information,
such as severity, priority, and component, are utilized; and
in [19], metadata extracted from ITS are proved to outperform
classifiers. However, these kinds of data are not produced when
the issue report is submitted. Consequently, obtaining struc-
tured information in GitHub is difficult because of omissions.
Textual summary is a main type of information used to build
the classification model.

III. DATA SET

A. Data Collection

The dataset from Yu [20], which is a comprehensive dataset
to study the pull-based model, involving 951,918 issues across
1,185 main-line projects in GitHub (dump dated 10/11/2014
based on GHTorrent [21], [22]), was used in this paper. Data
on title, content, labels, and contributors for each issue were
obtained through GitHub API. Projects need to contain a
sufficient number of labeled issues for training and testing to
test which supervised text-based classification performs best.
Otherwise, an appropriative number of bug and non-bug issues
existing in the projects is required to avoid the influence of
unbalanced dataset. Thus, the candidate projects from GitHub,
which have at least 500 labeled issues and bug rate between
20% and 80% (the labeling dataset process is presented in
section III-B), were finally identified and can be used as the
training and testing sets.

B. Category Extraction

Compared to traditional ITS, the ITS in GitHub uses a
labeling system to manage issues. Category information from
the user-defined label system must be extracted to obtain a
pre-labeled training set from GitHub. Our dataset has 7,793
different labels in 1,185 projects, and many projects use dif-
ferent tags (i.e., labels), such as bug, type:bug, error, and defect
to express the same meaning and identify bug-related issues.
A qualitative study is presented in this paper to comprehend
the use of tags as categories of issues in this section.

Many projects in GitHub provide additional information in
tags. For example, in project “WordPress-Android”, issues are
labeled as “[type] bug”, “[type] enhancement”, and so on.
Tags in these projects contain not only categories of issues
but also categories of the tag itself. The information is useful
in knowing what labels are mostly used to express categories
of issues.

A process is designed to aggregate these tags by fully
utilizing the additional information. First, all tags that act
as those forms were selected, and their information were
separated. A 2D vector < C,name > was used to represent
these tags, where C is the category of the tag (such as “type”,
“component”) and name is the main information of the tag
(such as “bug”, “feature”). Second, tags with similar C items
were grouped as GroupC . Then, the similarities of the two
groups were defined using Equation 1. The groups whose
similarity were greater than the threshold were merged.

similarity =

∣∣GroupCi

⋂
GroupCj

∣∣
min (|GroupCi| , |GroupCj |)

, (i 6= j) (1)

GroupCi
is a set of tags with the same category Ci and

different name. Finally, a structure tag information is obtained
through the aforementioned process.

TABLE I
TAGS IN GITHUB

Category Label Projects Issues Percent Total

bug
bug 644 118,155 46.9%

52.2%defect 15 7,604 3.0%
type:bug 13 5,684 2.3%

nonbug

enhancement 412 44,947 17.8%

38.6%

feature 199 14,795 5.9%
question 319 13,109 5.2%
feature request 93 6,976 2.8%
documentation 239 6,422 2.5%
improvement 45 5,592 2.2%
docs 122 5,510 2.2%

Through the prior process, we extract 149 tags, which can
indicate the category of issues, as group “type”. Finally, we
filter total 252,084 issues with tags in group group “type”.
Table I shows the most used tags in group “type”, and how
many projects and issues they appear. These tags were divided
into bug-prone or nonbug-prone by manually distinguishing.
The most used tags are bug, enhancement, and feature, which
were observed in 46.9%, 17.8%, and 5.9% of the labeled
issues, respectively. The issues with other tags These structure
tags were used in this study to judge whether an issue is bug-
prone or not.

The number of issues labeled with both categories is 3,869
in 386 projects, which can be ignored compared with 252,084
labeled issues.

C. Preprocessing of Dataset
Each issue, which can be labeled as “bug” or “non-bug”, is

characterized by its title and description. In this paper, issues
labeled by the former process were selected to perform the
following steps. First, linguistic features extracted for the text-
based classifier undergo standard processing, i.e., lowercase,
text filtering, stemming, and indexing [23]. All stop-words and
common English terms, such as “should”, “might”, “not”, were
retained. The importance of linguistic features for classifying
issues was indicated in study [4]; moreover, study [11] men-
tions that removing the default list of stop-words in common

corpora might decrease the classification accuracy. Otherwise,
“```” is used to distinguish the code information in issue
reports, because markdown editor is used in GitHub.

Then, a vector space model was used to represent each issue
as a weighted vector. The issue is segmented into different
terms (in this paper, a word means term) in which each
element in the vector of the issue is the weight of a term,
and the value stands for the importance of the term for the
issue. Term frequency-inverse document frequency (tf-idf) is
used to calculate weight. Tf-idf is based on two assumptions:
First, the frequency of the appearance of a given word implies
its importance to an issue. Second, the frequency of the
appearance of a word in several issues causes it to become
less useful to distinguish among these issues.

IV. METHODS

A. Text-based Classification

Facing the huge changes described in Section II-B, deter-
mining whether the regular pattern of free text found in re-
search [4] still works, and whether the performance of the text-
based classification model in dealing with large-scale projects
is efficient, are required. Many text-based classifications are
used to classify issues in different studies [4]–[6]. In this paper,
various types of widely used text-based classifications, such
as Naive Bayes, Logistic Regression, were selected to know
which classifier performs best. Table II shows the selected
text-based classifications and parameter settings, which are
determined by the best performance of numerous tests.

TABLE II
TEXT-BASED CLASSIFICATIONS AND PARAMETERS SETTING

Classifier API Parameters Setting
SVM SVC kernel=‘linear’
NB MultinomialNB class prior=‘None’
LR LogisticRegression penalty=‘l2’
RF RandomForestClassifier n estimators=100, n jobs=-1

A well-labeled dataset, which can be used to train the
classification model is constructed by dataset labeling process
and preprocessing. Table II shows the four classifiers built for
each project. We use APIs of package sklearn to implement the
methods. A ten-fold cross-validation was applied to separate
dataset samples into training and testing sets to evaluate the
classification model. The ten-fold cross-validation has a min-
imal effect on the sample characteristics and can investigate
the stability of item loading on multiple factors.

B. Regression Analysis of Classification Performance

The classification performances of different projects are
always various. This part aims to determine the factors that
influenced the performance of text-based classification. Man-
ual analysis was used to detect factors, and we discovered
several misclassified issues containing both bug- and nonbug-
prone parts. For example, contributors may discover some
unreasonable designs or problems in the project when they
submit an issue about feature request (e.g., EX in Section
IV-C). The issue EX is nonbug prone, but the part of problem

description is bug prone, which may confuse the classification.
Such issues are termed as confused issues.

Regression analysis techniques were used to verify our
perception. In this paper, multiple linear mixed effect models
were used to investigate the factors that affect classifier per-
formance. In addition to coefficients, the effect size of each
variable obtained from ANOVA analyses was reported. The
model’s fit can be evaluated by pseudo R-squared, i.e., the
marginal (Rm

2) and conditional (Rc
2) coefficient, to deter-

mine generalized mixed-effect models [24]. As implemented
in the MuMIn package of R [25], (Rm

2) is the proportion
of variance explained by the fixed effects alone, and (Rc

2)
is the proportion of variance explained by the fixed and
random effects. All numeric variables were first log trans-
formed (plus 0.5 if necessary) to stabilize variance and reduce
heteroscedasticity [26]. The variance inflation factors (VIFs)
for each predictor were computed to test for multicollinearity.
If the VIFs of all the remaining factors are below 3, then
multicollinearity is absent [26].

1) Outcome: The outcome measure is average F-measure
(calculated as Equation 4) of the classification. Because of ten-
fold cross-validation that we use, we can obtain 10 ∗ nproject

records for regression analysis, where nproject is the number
of projects.

2) Predictors: Project- and issue-level measures were com-
puted in this process. Project-level measures are features of the
status of the project, whereas issue-level measures are features
extracted from textual summary of issues.

Project-level measures
Star and watch: The number of stars and watches of the

project. This can reflect the popularity of the project in GitHub.
Contributors: The number of developers active in the

project. The data are acquired in the homepage of the project
in GitHub.

Project age: The project duration from the creation, in
timestamps.

Commits: The total number of commits of the project.
Issues: The number of issues used in training set.
Issue-level measures
Confused issues: The total number of confused issues. Each

sentence of the issue is predicted using the best model built
in Section IV-A. if not all sentences of the issue are predicted
to the same part, the issue will be considered as a confused
issue.

Median of words: The median number of words for each
instance in the training set. More words are likely to contain
more information, which may help for classifier.

C. Tow-stage Classification

Omitting structured information in GitHub, as described
in section II-B, results in that less information can be used
to build a synthesized classification model. The firsthand
features can be extracted, except for free text of issues, are
relating to the historical information about issue contributors,
e.g., contributor’s identity (core or external developer) and
historical developing activities. Thus, we propose a two-stage

classification approach to combine textual summary informa-
tion and developer information, which could be expected to
improve the performance of classification. Each stage of our
approach is explained in the following paragraphs, and the
overview of our approach is shown in Figure 5.

1) Stage 1 - Textual Summary Classification: In this stage,
the main task is to extract the information in the free text.
Similar to the process of Section IV-A, two main textual
information sources, title and description, were used. The
classification model was trained from the textual information
of training set, and the probability output of the model was
applied to predict the testing set. After that, the title and
description of the issue were divided into sentences, and the
classification model we build before was used to predict each
sentence. The sentence prediction results explain the changes
in semantic when contributors report an issue. Free text can be
examined further by analyzing the semantic perplexity infor-
mation of the sentence and the regular pattern in submitting
issues. The example will explain semantic perplexity.

EX: “Currently, auto-archiving cannot be used if Piwik’s
authentication is configured to use the CAS plugin. I ran into
this problem with authentication when running archive.php
with CAS plugin enabled on my site... Add a feature to auto-
archiving, so that it can succeeds when Piwik uses CAS for
authentication instead of the default Login module.”

Based on the EX, the first sentence describes the problem
encountered by the contributor. For the classification model,
this sentence is more likely to be predicted as bug-prone.
However, a new feature is proposed in the last sentence,
which is more likely to be predicted as non-bug-prone. For
the classification model, issues similar to EX are difficult to
classify because of the perplexity of the text. This situation
can be addressed by extracting the features and dividing the
issue into sentences. In Stage 1, the following features from
the textual summary were extracted:

Probability: The probability that the issue report is pre-
dicted as bug-prone. The probability output of the classifica-
tion model is used to obtain this feature.

SentenceCount: The total number of sentences in the issue
report, including title and description.

MostBugProb: The maximum probability of all sentences
that are predicted as bug-prone.

MostNonbugProb: The maximum probability of all sen-
tences that are predicted as nonbug-prone.

Location: The sequence number of the most non-bug
sentence. This feature was used to show where the nonbug
sentence appears in the issue report.

BugCount: The number of sentences that are predicted as
bug-prone.

NonbugCount: The number of sentences that are predicted
as non-bug-prone.

ChangeCount: The number of semantic changes. For sen-
tences sequence, every time the prone of sentences change
from bug-prone to nonbug-prone or vice versa, the semantic
changes will add one.

Perplexity: The perplexity of the issue. For sentence se-
quences of the issue, a series of probabilities that are predicted
as bug-prone were collected and their perplexity were calcu-
lated using Equation 2, which is borrowed from the perplexity
of natural language processing (NLP).

Perplexity =
1

SentenceCount

∑
log(pi+1 − pi) (2)

Where pi is the probability of the ith sentence.
These features need to be carefully extracted because of

using the ten-fold cross-validation. All these features are
assumed to be produced by a training set, which means that the
training set was used to build a prediction model, and use this
model to extract features of each instance in the training set.
This approach allows the extraction of features without using
the labeled information of a testing set, which may introduce
some additional information and produce less-scientific results.

2) Stage 2 - Combining Free Text and Developer Informa-
tion Classification: In Stage 1, the probability of bug-prone
and perplexity information of sentences for each issue were
obtained from free text. These features will be part of the input
of Stage 2.

The experience of developers may influence the categories
of issues. For example, skilled developers are likely to report a
bug-prone issue and provide issue reports that meet the spec-
ification of the core team. Thus, in Stage 2, some structured
features about contributors who submit issue reports were
provided. These features contain identity of contributors in the
project, historical developing activities, and social influence.
The detailed information are as follows:

IsCoreTeam: This feature shows whether the contributor
who reported the issue is a core team member in the project.
If the contributor is in the core team, this feature is set to 1,
otherwise, 0.

IssueCountInProject: The number of issues the contributor
reports before in the project.

IssueCountInGitHub: The number of issues the contribu-
tor reports to GitHub.

CommentCountInProject: The number of comments that
the contributor commits in the project.

CommentCountInGitHub: The number of comments the
contributor commits in GitHub.

FollowerCount: The number of followers that the contrib-
utor acquires. This feature can reveal the social influence of
the contributor in GitHub.

RegisterTime: This feature shows the duration that the con-
tributor has registered. The longer a contributor has registered,
the more familiar he is with the principles of GitHub.

Logistic regression was used as our prediction model in
Stage 2. Logistic regression needs to be careful in partitioning
datasets into training and testing sets before a prediction model
is built. The output of Stage 1 and input of Stage 2 are
associated. The testing set of Stages 1 and 2 should be similar
to ensure that the same training set will be used to build the
model, and to avoid the introduction of extra information from
the testing set.

GitHub Issue Reports

Developer History
Activities

Preprocess

Labeling
Dataset

Featured Instances

Text
Classifier

Dividing into
Sentences and

Preprocess

Featured
Sentences Instances

Probability

Perplexity
Information

Level 1

Developer Information

Data Grafting

Featured Instances

Prediction
Model

Level 2

Bug-prone

Nonbug-prone

data processing Process flow

Fig. 5. Overview of two-stage classification framework

V. RESULTS AND DISCUSSION

A. Evaluation Metrics

Precision, recall and F-measure are widely used standard
metrics in related work, such as issue assignment [27], bug
prediction [8], [28] and reviewer recommendation [29], [30].
These metrics can measure the performance of models from
different perspectives. For instance, precision is used to mea-
sure the exactness of the prediction, whereas recall evaluates
the completeness.

F-measure denotes the balance and discrepancy between
precision and recall, which can be interpreted as the weighted
average of precision and recall:

F −measure = 2 ∗ precision ∗ recall
precision+ recall

(3)

In [6], the weighted average value of F-measure for both
categories is used to evaluate the classification model. This
metric considers the performance of both categories and
provides an overall performance of the classification model.
Thus, in this paper, metrics similar to [6], which are defined
in Equation 4, were selected, in which the average F-measure
as favg , F-measure of bug (nonbug) as fbug (fnonbug), and
number of bug (nonbug) as nbug(nnonbug).

favg =
nbug ∗ fbug + nnonbug ∗ fnonbug

nbug + nnonbug
(4)

B. RQ1:Performance of Text-based Classification

For issue classification, four different machine learning
classifiers (“Naive Bayes”, “Logistic Regression”, “Random
Tree”, “Support Vector Machine”) were used on our dataset,
and four classification models were built for each project to
discuss which text-based classifier performs best. A baseline
method was set, a grep-based method, which uses a simple
grep with keywords like “bug”,“defect”, or “fix” to determine
whether an issue is bug. Boxplot was used to exhibit the result
of each classifier and acquire the overall performance of all

projects for each classifier. The average F-measure (i.e., favg)
was used to evaluate these classifiers and calculate the average
value of ten-fold results as performance. Figure 6 shows the
favg of baseline method and four different classifiers, where
the y-axis is favg.

Figure 6 shows that all four classifier approaches outperform
the baseline method. Logistic Regression and Random Tree
reach a close performance, which are better than that of Naive
Bayes but slightly worse than SVM.

Statistical analysis was used to verify our conclusions about
the difference between text-based classifiers and the baseline
method. Traditionally, the comparison of multiple groups
follows a two-step approach: first, a global null hypothesis
is tested, and then multiple comparisons are used to test the
sub-hypotheses pertaining to each pair of groups. However, the
global test null hypothesis may be rejected, whereas none of
the sub-hypotheses are rejected, or vice versa [31]. Therefore,
the one-step approach, multiple contrast test procedure T̃ [32],
[33], is preferred in this study. The procedure T̃ by nparcomp
package [34] in R was implemented to evaluate the F-Measure
of all the approaches operating on 80 projects in our dataset.
The Tukey (all-pairs) was set to contrast to compare all groups
pairwise. For each pair of groups, the 95% confidence interval
was analyzed to test whether the corresponding null sub-
hypothesis can be rejected. If the lower boundary of the
interval is greater than zero for groups A and B, then the
metric value is higher in A than in B. Similarly, if the upper
boundary of the interval is less than zero for groups A and B,
then the metric value is lower in A than in B. Finally, if the
lower boundary of the interval is less than zero and the upper
boundary is greater than zero, then the data do not provide
sufficient evidence to reject the null hypothesis.

Table III shows results of procedure T̃ (the last three rows
are the results of Section V-D). All the p-values are less
than 0.05 in the first four rows. Thus, a significant difference
among the four text-based classifications and base line method
is observed, which implies that text-based classifications are

TABLE III
COMPARISONS OF DIFFERENT TEXT-BASED CLASSIFIERS

Group A vs. Group B Estimator Lower Upper Statistic p-value

NB vs. Base Line 0.028 0.010 0.074 -9.61727834 0.000000e+00
LR vs. Base Line 0.005 0.001 0.025 -8.85487385 0.000000e+00
RF vs. Base Line 0.001 0.000 0.016 -6.53029671 3.446741e-10
SVM vs. Base Line 0.001 0.001 0.002 -43.36487241 0.000000e+00
SVM vs. NB 0.127 0.067 0.226 -7.62243934 0.1.173506e-13
SVM vs. LR 0.310 0.207 0.437 -4.04251177 5.212218e-04
SVM vs. RF 0.296 0.195 0.421 -4.36384024 1.115098e-04
Combined method vs. SVM 0.348 0.246 0.466 -3.277566 0.005725885
Combined method vs. developer information 0.398 0.290 0.517 -2.207413 0.012257345
Combined method vs. perplexity information 0.448 0.336 0.567 -1.113729 0.048434745

useful for the issue classification in ITS of GitHub. Similarly,
all the p-values are less than 0.05 in the next four rows and
the lower and upper boundaries are greater than zero, which
means that the performance of SVM is significantly better than
the other three classifications.

Result 1: In the context of GitHub’s ITS, text-based
classification approaches can achieve 69.7% to 98.9%
of average F-measure (calculated as Equation 4) on our
large-scale dataset, and the SVM classifier is the most
effective approach compared to other typical classifiers.

Base Line NB LR RF SVM

0.
2

0.
4

0.
6

0.
8

1.
0

pe
rf

or
m

an
ce

Fig. 6. favg of different ML methods

C. RQ2:Regression Analysis

Table IV shows the result of regression analysis. The model
achieves an amazing fit (Rc

2 = 92.5%). In our model, all
the remaining factors are well below three, thereby indicating
the absence of multicollinearity [26]. Moreover, no interaction
among the variables in the models is observed, making the in-
terpretation of our results easy and maintaining the cleanliness
of the models. For project-level measures, the number of issues
(log(issue num)) is highly significant, which means that the
number of issues in train set is far from sufficient. Based on

current data set, the more training sets used, the higher is the
average F-measure that the classification achieves. Moreover,
no statistical significance is observed in other project-level
measures with regard to the influencing the performance of
the classification model. For issue-level measures, the number
of confused issues (log(confuse count + 0.5)) contained in
the dataset is highly significant. When the dataset contains
many confused issues, too many instances locate closely at
the hyperplane of the classification model, which complicates
the construction of an effective model. The median number
of words (log(med word count)) in issues is insignificant,
thereby suggesting that providing many textual summaries of
the issues does not help in distinguishing between bug-prone
or non-bug-prone, and some key words may be enough to
build an effective classification model.

TABLE IV
REGRESSION RESULT OF FIXED EFFECT

Coeffs Sum Sq.
(intercept) -3.37543*
log(star + watch) 0.06316 0.197
log(issue num) 1.90440*** 30.484***
log(contributors) -0.03135 0.022
log(age+ 0.5) -0.22421* 0.288
log(commits) -0.34256 0.842*
log(confuse count+ 0.5) -1.83346*** 134.623***
log(med word count) 0.12505 0.067
marginal R-squared 0.6798150
conditional R-squared 0.9251896
signif.: p < 0.001 ‘***’, p < 0.01 ‘**’, p < 0.05 ‘*’

Result 2: Increasing the size of the training set can
effectively improve the performance of the classification
model. Furthermore, too many confused issues in the
training set will seriously affect its performance.

D. RQ3:2-stage Classification

An experiment based on the two-stage classifier was con-
ducted to validate our approach. In the first stage, SVM was
used as text classifier based on the conclusion of RQ1. In
the second stage, we selected Logistic Regression as our
prediction model, which performed better than other classifier
in table II. As projects that achieve a high favg (i.e., average

F-measure) contain few confused issues, our approach has
a slight effect on these projects. Thus, to explore the per-
formance of our approach for different projects, the project
selection has two cases. In the first case, projects whose favg
is less than the first quartile (0.7521) are selected. In the
second case, projects whose favg is less than the median
(0.7935) are selected. In this paper, SVM is selected as the first
method, whose favg is the best among the four different text-
based classifiers. Two other approaches are used to explore the
effect of developer information and perplexity information
in our two-stage approach. The developer information method
only extracts probability of being bug-prone from free text
in the first stage, because omitting the structured information
is serious in GitHub; thus, the historical activities of the
reporter in Stage 2 were selected to build as a classifier
similar to work [6] and are described in Section IV-C2. The
perplexity information method, which is used to compare the
effect of perplexity information and developer information,
extracts perplexity in the first stage, and does not use structured
developer information in the second stage. The combined
method is our two-stage approach, which makes use of both
perplexity information and developer information. Figure 7
shows the comparison results of favg .

First Quartile Median
0.68

0.70

0.72

0.74

0.76

0.78

0.80

P
e
rf

o
rm

a
n
ce

SVM developer information perplexity information combined method

Fig. 7. favg of different methods

Figure 7 shows that the combined method outperforms
all other methods for 80 projects. For procedure T̃ (last
rows in Table III), all the p-values of combined method
versus SVM, developer information method and perplexity
information method are less than 0.05, and the lower and upper
boundaries are greater than zero, which means that combined
method is more significant than other approaches.

Result 3: The two-stage classification approach can
achieve a statistically significant improvement compared
to traditional text-based classification by integrating our
novel perplexity features.

Although the value of the absolute increase is not impres-

sive, the extracted features (semantic perplexity information)
are generally effective in improving the performance of the
classifier model. The result of dividing sentences is not ideal.
Issue reports in these projects are contrasted sharply, combin-
ing free text with codes, hyper-link, and stack track, thereby
complicating the finetuning for every project. The preprocess-
ing is not perfect, which limits the promotion of some projects.
Even facing this challenge, our approach still achieves a stable
improvement. We believe that when applied in practice, a
highly individualized data preprocessing approach can be a
great help in extracting features that are in agreement with
our approach.

VI. THREATS TO VALIDITY

Our study had two main threats. The fist threat concerned
the study design about category extraction on our data set. We
utilized tags used most in GitHub to distinguish the category
of issues. We trained model on issues with these tags, so that
we could clearly know the category of samples in training
set. We ignored the issues without these tags, which might
introduce bias to dataset. However, many researches [4], [6]
selected labeled issues as training set. What’s more, unlabeled
issues was only a small part of the data set, which was 9.8%
in our study.

The second threat is the number of projects we used. We
filtered projects by the number of labeled issues and the rate
of bug-prone issues in projects. Our findings are based on
80 projects in GitHub. Compared to other studies, although
we used a large-scale dataset, it is still a very small part of
projects in GitHub. For filtered projects, our method need an
extra adjustment and further evaluation.

VII. CONCLUSIONS

Management tasks are always cumbersome and repetitive.
Using automatic methods to assist in solving these repetitive
but necessary tasks is crucial. In this paper, automatic classi-
fication techniques for issue reports were examined.

Four different text-based classification approaches in a
large-scale dataset were used to determine which approach
performs best. Regression analysis by multiple linear mixed
effects models was used to investigate key factors that limit
the performance of the classifier, and discovered that semantic
perplexity is a crucial factor that affects the performance of
classification. A two-stage classifier framework was estab-
lished based on the regression analysis. Some experiments
were conducted and the results show the following:

1) In our large scale study, text-based classification ap-
proaches work in the context of GitHubs ITS, and Support
Vector Machines (SVM) achieves the best performance among
4 different text-based classifiers.

2) Increasing the size of training set can effectively improve
the performance of the classification model. Besides, too many
confused issues (defined in Section IV-B) are harm for building
an effective text-based classifier.

3) Our 2-stage classifier framework can extract semantic
perplexity information from free text, which is benefit for clas-
sifier. The quantitative evaluations show that the classification
performance can achieve a significant improvement.

In our future work, we plan to explore the relationship
between the performance of classifier and topics of the is-
sue report. We believe that the distribution of categories is
associate with topics of issue reports. Otherwise, a more
outperforming preprocessing is our sustained progressing task.

ACKNOWLEDGMENT

This research is supported by National Science Founda-
tion of China (Grant No.61432020, 61472430, 61502512 and
61303064) and National Key R&D Program of China (2016-
YFB1000805).

REFERENCES

[1] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen, “Work
practices and challenges in pull-based development: The integrators
perspective,” in Proceedings of the 37th International Conference on
Software Engineering, vol. 1, 2015, pp. 358–368.

[2] N. Jalbert and W. Weimer, “Automated duplicate detection for bug
tracking systems,” in Dependable Systems and Networks With FTCS
and DCC, 2008. DSN 2008. IEEE International Conference on. IEEE,
2008, pp. 52–61.

[3] W. Huang, T. Lu, H. Zhu, G. Li, and N. Gu, “Effectiveness of conflict
management strategies in peer review process of online collaboration
projects,” in Proceedings of the 19th ACM Conference on Computer-
Supported Cooperative Work & Social Computing. ACM, 2016, pp.
717–728.

[4] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc,
“Is it a bug or an enhancement?: a text-based approach to classify
change requests,” in Proceedings of the 2008 conference of the center for
advanced studies on collaborative research: meeting of minds. ACM,
2008, p. 23.

[5] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: how
misclassification impacts bug prediction,” in Proceedings of the 2013
International Conference on Software Engineering. IEEE, 2013, pp.
392–401.

[6] Y. Zhou, Y. Tong, R. Gu, and H. Gall, “Combining text mining and
data mining for bug report classification,” in 2014 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2014, pp. 311–320.

[7] K. Herzig, S. Just, A. Rau, and A. Zeller, “Predicting defects using
change genealogies,” in Software Reliability Engineering (ISSRE), 2013
IEEE 24th International Symposium on. IEEE, 2013, pp. 118–127.

[8] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison
of bug prediction approaches,” in Mining Software Repositories (MSR),
2010 7th IEEE Working Conference on. IEEE, 2010, pp. 31–41.

[9] H. Hata, O. Mizuno, and T. Kikuno, “Bug prediction based on fine-
grained module histories,” in Proceedings of the 34th International
Conference on Software Engineering. IEEE Press, 2012, pp. 200–210.

[10] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in github,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 2015, pp. 805–816.

[11] T. F. Bissyandé, D. Lo, L. Jiang, L. Reveillere, J. Klein, and Y. Le Traon,
“Got issues? who cares about it? a large scale investigation of issue
trackers from github,” in Software Reliability Engineering (ISSRE), 2013
IEEE 24th International Symposium on. IEEE, 2013, pp. 188–197.

[12] T. Zimmermann, R. Premraj, J. Sillito, and S. Breu, “Improving bug
tracking systems.” in ICSE Companion. Citeseer, 2009, pp. 247–250.

[13] J. Spolsky, “Painless bug tracking,” 2010.
[14] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in

Proceedings of the 28th international conference on Software engineer-
ing. ACM, 2006, pp. 361–370.

[15] O. Baysal, M. W. Godfrey, and R. Cohen, “A bug you like: A framework
for automated assignment of bugs,” in Program Comprehension, 2009.
ICPC’09. IEEE 17th International Conference on. IEEE, 2009, pp.
297–298.

[16] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in Proceedings of the 30th international conference on
Software engineering. ACM, 2008, pp. 461–470.

[17] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1. ACM, 2010, pp. 45–54.

[18] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will
it take to fix this bug?” in Proceedings of the Fourth International
Workshop on Mining Software Repositories. IEEE Computer Society,
2007, p. 1.

[19] T. Merten, M. Falis, P. Hübner, T. Quirchmayr, S. Bürsner, and B. Paech,
“Software feature request detection in issue tracking systems,” in Re-
quirements Engineering Conference (RE), 2016 IEEE 24th International.
IEEE, 2016, pp. 166–175.

[20] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait
for it: Determinants of pull request evaluation latency on github,” in
Mining Software Repositories (MSR), 2015 IEEE/ACM 12th Working
Conference on. IEEE, 2015, pp. 367–371.

[21] G. Gousios, “The ghtorent dataset and tool suite,” in Proceedings of
the 10th Working Conference on Mining Software Repositories. IEEE
Press, 2013, pp. 233–236.

[22] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman, “Lean
ghtorrent: Github data on demand,” in Proceedings of the 11th Working
Conference on Mining Software Repositories. ACM, 2014, pp. 384–
387.

[23] W. B. Frakes and R. Baeza-Yates, “Information retrieval: data structures
and algorithms,” 1992.

[24] J. Tsay, L. Dabbish, and J. Herbsleb, “Let’s talk about it: evaluating
contributions through discussion in github,” in Proceedings of the 22nd
ACM SIGSOFT international symposium on foundations of software
engineering. ACM, 2014, pp. 144–154.

[25] J. J. Jiang, G. Klein, H.-G. Hwang, J. Huang, and S.-Y. Hung, “An
exploration of the relationship between software development process
maturity and project performance,” Information & Management, vol. 41,
no. 3, pp. 279–288, 2004.

[26] M. Gharehyazie, D. Posnett, B. Vasilescu, and V. Filkov, “Developer
initiation and social interactions in oss: A case study of the apache
software foundation,” Empirical Software Engineering, vol. 19, no. Part
C, pp. 342–354, 2014.

[27] M. S. Zanetti, I. Scholtes, C. J. Tessone, and F. Schweitzer, “Categoriz-
ing bugs with social networks: a case study on four open source software
communities,” in Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press, 2013, pp. 1032–1041.

[28] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in Proceedings of the 14th ACM
conference on Computer and communications security. ACM, 2007,
pp. 529–540.

[29] J. B. Lee, A. Ihara, A. Monden, and K.-i. Matsumoto, “Patch reviewer
recommendation in oss projects,” in 2013 20th Asia-Pacific Software
Engineering Conference (APSEC), vol. 2. IEEE, 2013, pp. 1–6.

[30] G. Jeong, S. Kim, T. Zimmermann, and K. Yi, “Improving code review
by predicting reviewers and acceptance of patches,” Research on Soft-
ware Analysis for Error-free Computing Center Tech-Memo (ROSAEC
MEMO 2009-006), pp. 1–18, 2009.

[31] K. R. Gabriel, “Simultaneous test procedures–some theory of multiple
comparisons,” The Annals of Mathematical Statistics, pp. 224–250,
1969.

[32] F. Konietschke, L. A. Hothorn, E. Brunner et al., “Rank-based multi-
ple test procedures and simultaneous confidence intervals,” Electronic
Journal of Statistics, vol. 6, pp. 738–759, 2012.

[33] Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer recommendation for
pull-requests in github: What can we learn from code review and bug
assignment?” Information and Software Technology, vol. 74, pp. 204–
218, 2016.

[34] J. R. Fraenkel, N. E. Wallen, and H. H. Hyun, How to design and
evaluate research in education. McGraw-Hill New York, 1993, vol. 7.

